Welcome Guest
( Log In | Register )
The time is now 6:16 am
You last visited September 28, 2016, 6:12 am
All times shown are
Eastern Time (GMT-5:00)

JADELottery's Blog

  • JADELottery's Blog has 3,842 entries (90 private) and has been viewed 8,391,789 times.
  • Lottery Post members have made 2895 comments in JADELottery's Blog.
  • JADELottery is a Platinum member
JADELottery's Premium Blog:  http://blogs.lotterypost.com/jadelottery/

Yesterday, 1:45 pmBreaking News...

... yep, the Monster Media is Broken.

They Know It and the only way to fix it is to shutdown everyone else.

 

Entry #3,842
View and Add Comments  (2 Comments)

Yesterday, 11:22 amRigged Pantsuit?

Entry #3,841
View and Add Comments  (12 Comments)

Yesterday, 8:38 amHe Came, He Spoke, He Won.

 

Last Edited: Yesterday, 10:25 am

Entry #3,840
View and Add Comments  (19 Comments)

Yesterday, 8:27 amRigged Debate. Rigged Poll. Next, Rigged Election?

 

 

 

 

Last Edited: Yesterday, 9:13 am

Entry #3,839
View and Add Comments  (3 Comments)

September 26, 2016, 7:27 pmdebate debate

Entry #3,838
View and Add Comments  (3 Comments)

September 26, 2016, 8:09 amWhat's going on here?

Entry #3,836
View and Add Comments  (8 Comments)

September 26, 2016, 8:07 amYes, We Will Circumvent the Censors.

Entry #3,835
View and Add Comments  (3 Comments)

September 25, 2016, 9:46 pmTrump and Pence join to form...

... the homonym Trumpets.

The Trumpets are sounding.

Last Edited: September 25, 2016, 9:47 pm

Entry #3,834
View and Add Comments  (2 Comments)

September 25, 2016, 2:58 pmAbout It No Doubt.

Entry #3,833
View and Add Comments  (0 Comments)

September 25, 2016, 10:22 amNo Doubt About It.

Entry #3,832
View and Add Comments  (0 Comments)

September 22, 2016, 8:17 amThr's a Moose Loose ner a Hoose.

Entry #3,831
View and Add Comments  (0 Comments)

September 22, 2016, 8:13 amA Fact is A Fact.

Entry #3,830
View and Add Comments  (0 Comments)

September 21, 2016, 1:56 pmBreaking News...

... Yea-uh, It's Broken Alright.

Entry #3,829
View and Add Comments  (1 Comment)

September 20, 2016, 3:24 pmCliamte Chump Change Con

 

Entry #3,828
View and Add Comments  (0 Comments)

September 19, 2016, 10:35 pmCombinatorial Fractalization reformated

A while back we post the Combinatorial Fractalization.

Unfortunately, we used a format that could only be seen correctly in Internet Explorer.

We reformatted it for other browsers.

 

Combinatorial Fractalization

    C(n, r) =  [from z = 1 to z = n - r + 1]  Σ C(n - z, r - 1)

    C(n, r) = C(n - 1, r - 1) + C(n - 2, r - 1) + C(n - 3, r - 1) + ... + C(r + 3, r - 1) + C(r + 2, r - 1) + C(r + 1, r - 1) + C(r, r - 1) + C(r - 1, r - 1)

    Fractals of C(n, r) -  {C(n - 1, r - 1), C(n - 2, r - 1), C(n - 3, r - 1), ... , C(r + 3, r - 1), C(r + 2, r - 1), C(r + 1, r - 1), C(r, r - 1), C(r - 1, r - 1)}
        Fractals of C(n, r) - [from z = 1 to z = n - r + 1] ψ {C(n - z, r - 1)}

    Iteration of C(n, r) Fractals
          Fractals of C(n - 1, r - 1) - {C(n - 2, r - 2), C(n - 3, r - 2), C(n - 4, r - 2), ... , C(r + 2, r - 2), C(r + 1, r - 2), C(r, r - 2), C(r - 1, r - 2), C(r - 2, r - 2)}
          Fractals of C(n - 1, r - 1) - [from z = 1 to z = n - r + 1] ψ {C(n - z - 1, r - 2)}



      Fractals of C(n - 2, r - 1) - {C(n - 3, r - 2), C(n - 4, r - 2), C(n - 5, r - 2), ... , C(r + 2, r - 2), C(r + 1, r - 2), C(r, r - 2), C(r - 1, r - 2), C(r - 2, r - 2)}
      Fractals of C(n - 2, r - 1) - [from z = 1 to z = n - r] ψ {C(n - z - 2, r - 2)}


      Fractals of C(n - 3, r - 1) - {C(n - 4, r - 2), C(n - 5, r - 2), C(n - 6, r - 2), ... , C(r + 2, r - 2), C(r + 1, r - 2), C(r, r - 2), C(r - 1, r - 2), C(r - 2, r - 2)}
      Fractals of C(n - 3, r - 1) - [from z = 1 to z = n - r -1] ψ {C(n - z - 3, r - 2)}
      .
          .
          .

          Fractals of C(r + 1, r - 1) - {C(r, r - 2), C(r - 1, r - 2), C(r - 2, r - 2)}

      Fractals of C(r + 1, r - 1) - [from z = 1 to z = 3] ψ {C(r - z + 1, r - 2)}


      Fractals of C(r, r - 1) - {C(r - 1, r - 2), C(r - 2, r - 2)}
      Fractals of C(r, r - 1) - [from z = 1 to z = 2] ψ {C(r - z, r - 2)}


      Fractals of C(r - 1, r - 1) - {C(r - 2, r - 2)}
      Fractals of C(r - 1, r - 1) - [from z = 1 to z = 1] ψ {C(r - z - 1, r - 2)}

Within every combinatorial set there are subsets of combinations that are similar in characteristics to the whole combination. Example, below is a sample combinatorial set of 8 numbers taken 6 at a time. Alongside the combinatorial set are a few subsets of combinations. Table 1 shows only one leg of the fractal path. The fractals are in red and transformed to the right. The symbol Ψ is the superset fractal and extends to infinity.

 

Table 1
Fractal Path is Ψ ψ(8,6) ψ(7,5) ψ(6,4) ψ(5,3) ψ(4,2) ψ(3,1)

1

2

3

4

5

6

1

2

3

4

5

1

2

3

4

1

2

3

1

2

1

1

2

3

4

5

7

1

2

3

4

6

1

2

3

5

1

2

4

1

3

2

1

2

3

4

5

8

1

2

3

4

7

1

2

3

6

1

2

5

1

4

3

1

2

3

4

6

7

1

2

3

5

6

1

2

4

5

1

3

4

2

3

 

 

1

2

3

4

6

8

1

2

3

5

7

1

2

4

6

1

3

5

2

4

 

 

1

2

3

4

7

8

1

2

3

6

7

1

2

5

6

1

4

5

3

4

 

 

1

2

3

5

6

7


1

2

4

5

6

1

3

4

5

2

3

4

 

 

 

 

 

1

2

3

5

6

8

1

2

4

5

7

1

3

4

6

2

3

5

 

 

 

 

 

1

2

3

5

7

8

1

2

4

6

7

1

3

5

6

2

4

5

 

 

 

 

 

1

2

3

6

7

8

1

2

5

6

7

1

4

5

6

3

4

5

 

 

 

 

 

1

2

4

5

6

7

1

3

4

5

6

2

3

4

5

 

 

 

 

 

 

 

 

 

1

2

4

5

6

8

1

3

4

5

7

2

3

4

6

 

 

 

 

 

 

 

 

 

1

2

4

5

7

8

1

3

4

6

7

2

3

5

6

 

 

 

 

 

 

 

 

 

1

2

4

6

7

8

1

3

5

6

7

2

4

5

6

 

 

 

 

 

 

 

 

 

1

2

5

6

7

8

1

4

5

6

7

3

4

5

6

 

 

 

 

 

 

 

 

 

1

3

4

5

6

7

2

3

4

5

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3

4

5

6

8

2

3

4

5

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3

4

5

7

8

2

3

4

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3

4

6

7

8

2

3

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3

5

6

7

8

2

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

4

5

6

7

8

3

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

6

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

4

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here's another fractal path shown in Table 2.

 

Table 2
Fractal Path is Ψ ψ(8,6) ψ(7,5) ψ(5,4) ψ(3,3) ψ(2,2) ψ(1,1)

1

2

3

4

5

6

1

2

3

4

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

7

1

2

3

4

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

8

1

2

3

4

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

6

7

1

2

3

5

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

6

8

1

2

3

5

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

7

8

1

2

3

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

5

6

7

1

2

4

5

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

5

6

8

1

2

4

5

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

5

7

8

1

2

4

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

6

7

8

1

2

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

4

5

6

7

1

3

4

5

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

4

5

6

8

1

3

4

5

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

4

5

7

8

1

3

4

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

4

6

7

8

1

3

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

5

6

7

8

1

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3

4

5

6

7

2

3

4

5

6

1

2

3

4

 

 

 

 

 

 

 

 

 

1

3

4

5

6

8

2

3

4

5

7

1

2

3

5

 

 

 

 

 

 

 

 

 

1

3

4

5

7

8

2

3

4

6

7

1

2

4

5

 

 

 

 

 

 

 

 

 

1

3

4

6

7

8

2

3

5

6

7

1

3

4

5

 

 

 

 

 

 

 

 

 

1

3

5

6

7

8

2

4

5

6

7

2

3

4

5

1

2

3

1

2

1

1

4

5

6

7

8

3

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

6

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

6

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

5

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

4

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

3

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

4

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

4

5

6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Last Edited: September 20, 2016, 10:22 am

Entry #3,827
View and Add Comments  (0 Comments)
Previous Page  Page  of 251  Next Page