Welcome Guest
You last visited December 3, 2016, 8:36 am
All times shown are
Eastern Time (GMT-5:00)

# Repetition and skips explained

Topic closed. 13 replies. Last post 5 years ago by SergeM.

 Page 1 of 1
Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 11, 2012, 7:02 pm - IP Logged

A repetition is a skip of 0 games.

For keno 20/70, 20 numbers are drawn, 50 numbers are not drawn. The chance is 20.

The chance for a repetition is 20/70 or 2/7. You can expect average 2/7*20 numbers to repeat.

Skip 0: average 20*(2/7)1 numbers.
Skip 1: average 20*(2/7)2 numbers.
Skip 2: average 20*(2/7)3 numbers.
Skip 3: average 20*(2/7)4 numbers.
...

With p = 20, n = 70: avg skip x = p*(p/n)1+x

Repetitions can vary from 0 to maximum 20 of 20 drawn numbers.
The average is 2/7*20 drawn numbers.

Los Angeles
United States
Member #75410
June 2, 2009
479 Posts
Offline
 Posted: May 13, 2012, 3:21 pm - IP Logged

Hi SergeM,

Talking about Keno 20/70 do you have a system for it ? I would be interrested.

Regards,

Serge.

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 13, 2012, 5:10 pm - IP Logged

Hi SergeM,

Talking about Keno 20/70 do you have a system for it ? I would be interrested.

Regards,

Serge.

That's a hard nut!

Picking the system to play and mixing the numbers is related to the payouts.
I pick my numbers using my own "software". I will send you a few suggestions how you could play.

bgonÃ§alves
Brasil
Member #92564
June 9, 2010
2122 Posts
Offline
 Posted: May 13, 2012, 6:37 pm - IP Logged

Hello sergem on this lottery 50/5 eurominlhao   If we divide the trio in a position to have 10 positions 1,2,3 1,2,4 1,2,5 2,3,4 2,3,5 ...... = 3,4,5 up the total are 10 position   Sergem, how you could make or assemble a formula of probability Or within 10 positions of the suit, suit or have greater likelihood of left in a certain position, ie its frequency in repeats determicada position. example Suit 02,08,45 = the best position to place this suit? Sergem if we use certain fixed positions within the greater probability! You can see this formula? It can serve many lotteries

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 14, 2012, 10:41 am - IP Logged

I am sure that a man with a doctor title can calculate this with paper and pencil.

United States
Member #124493
March 14, 2012
7023 Posts
Offline
 Posted: May 15, 2012, 9:12 pm - IP Logged

2/7=0.28

Skip 0: average 20*(2/7)1 numbers.      20*0.28=5.6

Skip 1: average 20*(2/7)2 numbers.       20*0.28=5.6 →  (5.6)^2= 31.36

Skip 2: average 20*(2/7)3 numbers.                                             (5.6)^3= 175.61

Skip 3: average 20*(2/7)4 numbers.                                               (5.6)^4= 983.41

is this the correct calculation??

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 17, 2012, 6:48 am - IP Logged

If you wonder, how many repetitions do I expect? The average can be 1.2 for example, so you might expect one repetition.

With integers, you wouldn't talk about an average, but you would sum up the amount of repetitions by their count.  Repetitions: 0:*1, 1:*10, 2:*2, 3:*0 ... . By calculating the weighted average, you should find a value close to the probability.

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 17, 2012, 10:55 am - IP Logged

For repetitions, you might go further into probabilities.

For Keno 20/70, I calculated in Excel the odds for the count of numbers repeating.

 Repetitions Odds 0 0,000291128440738996 1 0,003756496009535440 2 0,021188985303785800 3 0,069345770085117200 4 0,147359761430874000 5 0,215566279578879000 6 0,224548207894665000 7 0,169928373541909000 8 0,094466760291390200 9 0,038755593965698500 10 0,011723567174623800 11 0,002599460570870020 12 0,000417770448889825 13 0,000047830605955186 14 0,000003804707291890 15 0,000000202917722234 16 0,000000006892585674 17 0,000000000138024244 18 0,000000000001437753 19 0,000000000000006177 20 0,000000000000000006

 Repetition(s): 0:3434,91 1:266,21 2:47,19 3:14,42 4:6,79 5:4,64 6:4,45 7:5,88 8:10,59 9:25,8 10:85,3 11:384,7 12:2393,66 13:20907,12 14:262832,31 15:4928105,78 16:145083434,19 17:7245103994,93 18:695529983513,03 19:161884603662658 20:1,61884603662658E+17

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 21, 2012, 7:26 pm - IP Logged

Pick 3

For 1 digit, p = 1/10

Skip 0:  0.1         1 in 10
Skip 1:  0.01       1 in 100
Skip 2:  0.001     1 in 1000
Skip 3:  0.0001   1 in 10000
...

For 2 digits, p = 1/100

Skip 0:  0.01         1 in 100
Skip 1:  0.0001     1 in 10 000
...

For 3 digits, p = 1/1000

Skip 0: 0.001      1 in 1000
Skip 1: 0.000 001    ...

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 21, 2012, 8:15 pm - IP Logged

This is different to the model. Third digit for 100 drawings.

Skips & count

 -55 1 -36 1 -32 1 -26 1 -23 2 -22 3 -20 1 -19 2 -18 2 -17 5 -15 1 -14 4 -13 3 -12 6 -11 2 -10 7 -9 3 -8 2 -7 5 -6 5 -5 7 -4 9 -3 4 -2 3 -1 9 0 11

Belgium
Member #128218
May 19, 2012
96 Posts
Offline
 Posted: May 22, 2012, 6:13 am - IP Logged

I am sure that a man with a doctor title can calculate this with paper and pencil.

Belgium
Member #128218
May 19, 2012
96 Posts
Offline
 Posted: May 22, 2012, 6:15 am - IP Logged

Thanks for the interesting topic SergeM, I will have a look at it...

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: May 22, 2012, 1:06 pm - IP Logged

Pick 3 BE
History of 2963 drawings,
last 1000 drawings.

Skips before hit:

NOT = was not drawn before

 NOT 92 0 1 -1 2 -2 1 -3 1 -6 2 -7 2 -8 2 -9 2 -11 1 -14 1 -18 1 -19 1 -21 2 -22 2 -23 1 -24 1 -25 2 -27 2 -29 1 -30 1 -31 1 -32 2 -33 2 -34 1 -35 4 -38 1 -39 1 -40 1 -41 1 -42 1 -43 1 -45 1 -48 1 -51 1 -53 1 -56 2 -59 2 -60 1 -61 1 -62 1 -63 1 -65 1 -66 2 -67 1 -68 1 -70 1 -72 1 -73 1 -74 1 -76 1 -77 3 -81 2 -82 1 -83 2 -85 3 -86 3 -87 3 -90 1 -92 1 -93 1 -94 2 -95 2 -96 1 -97 2 -98 2 -99 1 -103 1 -104 1 -106 1 -110 2 -114 1 -115 1 -116 2 -118 2 -119 1 -121 2 -122 1 -123 1 -124 1 -125 2 -126 1 -127 1 -129 1 -130 2 -131 1 -134 1 -135 2 -136 1 -137 2 -138 1 -140 1 -142 2 -143 2 -144 1 -146 2 -148 1 -149 1 -150 1 -151 1 -153 1 -154 1 -155 1 -156 1 -159 2 -160 1 -162 3 -163 1 -164 1 -166 3 -167 2 -168 3 -170 1 -173 2 -174 3 -175 1 -176 2 -177 1 -178 2 -180 1 -181 3 -182 1 -183 2 -186 2 -187 2 -188 2 -189 1 -190 2 -193 1 -196 1 -197 1 -198 1 -199 2 -200 1 -201 1 -203 2 -206 3 -208 2 -209 1 -212 1 -215 1 -217 1 -221 1 -223 1 -224 2 -225 1 -227 1 -229 1 -231 1 -232 1 -233 2 -235 2 -237 1 -238 1 -239 1 -242 1 -243 3 -245 1 -246 2 -247 1 -248 1 -250 1 -253 1 -255 1 -257 1 -258 1 -259 1 -260 2 -261 1 -262 1 -263 1 -267 2 -271 1 -274 3 -278 2 -280 1 -282 3 -283 2 -284 1 -285 3 -286 1 -288 2 -292 2 -293 1 -297 1 -298 1 -304 1 -306 1 -308 1 -309 1 -311 3 -312 1 -313 1 -314 1 -316 1 -317 2 -318 2 -319 2 -321 1 -324 1 -328 2 -330 3 -333 1 -334 1 -336 1 -338 2 -342 1 -343 1 -346 1 -348 2 -351 2 -356 1 -358 1 -359 2 -360 2 -362 1 -363 1 -364 1 -365 2 -368 1 -370 1 -371 1 -374 2 -375 1 -378 1 -379 2 -381 2 -382 1 -383 1 -384 2 -389 1 -391 1 -392 1 -393 1 -395 1 -399 2 -400 1 -402 1 -403 1 -406 2 -407 1 -409 1 -410 1 -412 1 -414 1 -415 2 -419 2 -420 2 -422 1 -424 1 -425 1 -426 1 -427 1 -428 1 -430 2 -434 1 -435 2 -436 1 -438 1 -440 1 -441 1 -447 2 -449 1 -450 1 -452 1 -455 2 -457 1 -459 1 -462 2 -463 1 -465 1 -466 1 -470 1 -471 3 -472 1 -475 1 -476 1 -477 1 -478 1 -481 1 -485 1 -492 1 -493 2 -495 1 -496 1 -498 2 -501 1 -502 2 -505 3 -506 1 -508 1 -510 2 -511 1 -512 1 -513 2 -514 2 -518 1 -521 1 -529 1 -531 1 -532 1 -534 3 -536 1 -539 1 -540 2 -541 1 -542 2 -546 1 -548 1 -556 1 -562 1 -563 1 -565 2 -566 2 -567 1 -574 1 -575 1 -577 1 -579 1 -582 2 -584 1 -586 1 -587 1 -588 1 -591 1 -594 1 -595 1 -596 1 -597 2 -598 2 -599 1 -600 1 -601 1 -602 1 -605 1 -608 1 -611 1 -614 2 -615 1 -619 1 -620 2 -621 1 -625 1 -626 1 -628 1 -629 1 -631 1 -634 1 -638 1 -639 1 -640 1 -644 1 -645 1 -646 2 -647 1 -649 1 -651 1 -656 1 -663 1 -665 1 -667 2 -673 1 -677 1 -678 1 -682 1 -686 1 -692 2 -693 1 -695 2 -697 1 -699 1 -703 1 -704 1 -707 1 -709 1 -714 1 -716 1 -717 1 -719 1 -722 1 -723 1 -729 1 -731 1 -734 1 -736 2 -741 1 -742 1 -748 1 -749 1 -751 1 -761 1 -762 1 -764 2 -767 3 -773 1 -777 1 -778 2 -780 1 -781 1 -787 1 -788 1 -789 2 -790 2 -792 1 -793 1 -795 1 -799 2 -801 1 -802 2 -804 2 -805 1 -806 1 -812 1 -819 1 -821 1 -829 1 -835 1 -836 1 -837 1 -838 1 -843 1 -847 1 -849 3 -859 2 -861 1 -862 1 -873 4 -876 1 -882 1 -883 1 -884 1 -886 1 -887 1 -889 2 -890 2 -894 1 -895 1 -901 1 -904 2 -908 1 -910 1 -912 1 -913 1 -914 1 -915 1 -916 2 -917 1 -919 1 -923 2 -926 1 -927 1 -932 1 -933 1 -935 1 -937 1 -938 1 -941 1 -943 1 -950 1 -951 1 -957 1 -958 1 -961 1 -962 1 -963 1 -965 3 -966 1 -974 2 -975 1 -977 1 -979 1 -981 1 -983 1 -985 1 -989 2 -991 1 -997 1 -1000 1 -1007 1 -1008 1 -1009 2 -1015 1 -1016 1 -1018 1 -1019 1 -1028 1 -1029 1 -1033 1 -1035 1 -1037 1 -1038 2 -1042 2 -1052 1 -1055 1 -1069 1 -1070 1 -1071 1 -1075 1 -1077 1 -1080 1 -1084 1 -1086 1 -1089 1 -1093 1 -1094 1 -1095 2 -1099 1 -1101 2 -1102 1 -1105 1 -1108 1 -1110 2 -1112 1 -1116 1 -1119 1 -1131 1 -1138 3 -1144 1 -1150 1 -1151 1 -1162 1 -1165 1 -1166 1 -1168 1 -1169 1 -1170 1 -1172 1 -1180 1 -1188 2 -1190 2 -1192 1 -1197 1 -1199 1 -1203 1 -1213 1 -1219 1 -1220 1 -1225 1 -1232 1 -1240 1 -1241 1 -1244 1 -1246 1 -1247 1 -1250 1 -1253 1 -1259 1 -1264 2 -1271 1 -1272 2 -1278 1 -1279 1 -1281 1 -1283 1 -1287 1 -1292 1 -1293 1 -1306 1 -1310 2 -1311 1 -1315 1 -1319 1 -1330 1 -1334 1 -1337 1 -1339 1 -1342 1 -1348 1 -1351 1 -1355 1 -1356 1 -1358 1 -1359 1 -1360 1 -1362 1 -1364 1 -1366 1 -1371 1 -1373 1 -1375 1 -1384 1 -1387 1 -1390 1 -1401 1 -1406 1 -1409 1 -1414 1 -1415 1 -1417 1 -1420 1 -1423 2 -1435 1 -1446 1 -1451 1 -1460 1 -1463 3 -1466 1 -1474 1 -1478 1 -1483 1 -1498 1 -1499 1 -1508 1 -1511 1 -1512 1 -1513 1 -1516 1 -1520 1 -1525 1 -1527 1 -1528 1 -1535 2 -1536 1 -1541 1 -1543 1 -1544 1 -1547 1 -1555 1 -1565 1 -1568 2 -1583 1 -1592 1 -1619 1 -1620 1 -1628 1 -1639 1 -1646 1 -1662 1 -1673 2 -1678 1 -1680 1 -1681 1 -1683 2 -1692 2 -1706 1 -1715 1 -1718 1 -1720 1 -1721 1 -1733 1 -1746 1 -1747 1 -1755 1 -1758 1 -1764 1 -1777 1 -1781 1 -1783 1 -1784 1 -1791 1 -1795 1 -1796 1 -1797 1 -1798 1 -1801 1 -1803 1 -1826 1 -1832 1 -1840 1 -1841 1 -1853 1 -1859 1 -1861 1 -1862 1 -1872 1 -1885 1 -1895 1 -1897 1 -1907 1 -1914 1 -1928 1 -1956 1 -1957 1 -1958 1 -1969 1 -1970 1 -1995 1 -1999 1 -2002 1 -2004 1 -2010 1 -2011 1 -2027 1 -2030 1 -2038 1 -2039 1 -2047 1 -2061 1 -2066 1 -2092 1 -2093 1 -2094 2 -2111 1 -2113 1 -2114 1 -2132 1 -2135 1 -2141 1 -2161 1 -2197 1 -2207 1 -2212 1 -2253 1 -2260 1 -2265 1 -2268 1 -2280 1 -2298 1 -2316 1 -2322 1 -2336 1 -2343 1 -2347 1 -2408 1 -2457 1 -2488 1 -2578 1 -2604 1 -2606 1 -2622 1 -2626 1 -2696 1 -2817 1 -2872 1

Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
 Posted: June 2, 2012, 11:08 am - IP Logged

Euromillions

Numbers:

3 skips 3 hits in x drawings?

 Relative frequency Frequency Count ofgamesneeded 0,02 48 3 to 7 0,09 206 8 to 12 0,13 296 13 to 17 0,15 357 18 to 22 0,14 333 23 to 27 0,11 262 28 to 32 0,10 245 33 to 37 0,08 185 38 to 42 0,05 112 43 to 47 0,03 81 48 to 52 0,02 41 53 to 57 0,03 64 58 to 62 0,01 35 63 to 67 0,01 19 68 to 72 0,01 20 73 to 77 0,00 10 78 to 82 0,00 7 83 to 87 0,00 6 88 to 92 0,00 3 93 to 97 0,00 4 98 to 102 0,00 2 103 to 107

 Page 1 of 1