Welcome Guest
Log In | Register )
You last visited January 24, 2017, 8:15 pm
All times shown are
Eastern Time (GMT-5:00)

What number is too high to play for a first ball? (mm/pb)

Topic closed. 23 replies. Last post 3 years ago by sandnan.

Page 2 of 2
52
PrintE-mailLink
SergeM's avatar - slow icon.png
Economy class
Belgium
Member #123700
February 27, 2012
4035 Posts
Offline
Posted: March 21, 2014, 11:01 am - IP Logged

I'm surprised Jo one eon the prize. Ball 75 would be too high. Lol. Sorry guys had to say it

What number is too high to play for a first ball? (mm/pb)

76 is too high too.


    United States
    Member #124493
    March 14, 2012
    7023 Posts
    Offline
    Posted: March 21, 2014, 12:02 pm - IP Logged

    I'm surprised Jo one eon the prize. Ball 75 would be too high. Lol. Sorry guys had to say it

    I think 74 might be too high too.Stooges

      JADELottery's avatar - YingYangYong 01.PNG
      The Quantum Master
      West Concord, MN
      United States
      Member #21
      December 7, 2001
      3685 Posts
      Offline
      Posted: March 22, 2014, 11:07 am - IP Logged

      2 last night (2014-03-21).

      We ran a 10,000 draw simulation to see what kind of continuation this run of selecting in the range of 01 to 12 might look like.

      A count of 1 in the left column means it selected in the range of 01 to 12 and the next draw did not; essentially the selection cycle starts again.

      This last cycle makes it a count of 8 and the next cycle is 9 for 2014-03-25 draw.

       

      Consecutive Run or # of Selections Drawn in Range 01 to 12Percent of 10,000 Draw Sample Observation
      19.77%
      25.82%
      33.42%
      42.08%
      51.28%
      60.79%
      70.28%
      80.22%
      90.13%
      100.17%
      110.04%
      120.02%
      130.03%
      140.01%
      180.01%

      Presented 'AS IS' and for Entertainment Purposes Only.
      Any gain or loss is your responsibility.
      Use at your own risk.

      Order is a Subset of Chaos
      Knowledge is Beyond Belief
      Wisdom is Not Censored
      Douglas Paul Smallish
      Jehocifer

        Avatar

        United States
        Member #35335
        March 16, 2006
        116 Posts
        Offline
        Posted: March 22, 2014, 3:48 pm - IP Logged

        Formula please:)

         

        I will state most emphatically that pseudo-random number generators are absolute junk.

          JADELottery's avatar - YingYangYong 01.PNG
          The Quantum Master
          West Concord, MN
          United States
          Member #21
          December 7, 2001
          3685 Posts
          Offline
          Posted: March 23, 2014, 3:16 pm - IP Logged

          Formula please:)

           

          I will state most emphatically that pseudo-random number generators are absolute junk.

          It follows this thread we posted many draws ago.

          Discharging Reoccurrence Distribution

          To find the distribution you have to determine what it is by what it is not.

          Presented 'AS IS' and for Entertainment Purposes Only.
          Any gain or loss is your responsibility.
          Use at your own risk.

          Order is a Subset of Chaos
          Knowledge is Beyond Belief
          Wisdom is Not Censored
          Douglas Paul Smallish
          Jehocifer

            JADELottery's avatar - YingYangYong 01.PNG
            The Quantum Master
            West Concord, MN
            United States
            Member #21
            December 7, 2001
            3685 Posts
            Offline
            Posted: March 24, 2014, 3:29 pm - IP Logged

            It follows this thread we posted many draws ago.

            Discharging Reoccurrence Distribution

            To find the distribution you have to determine what it is by what it is not.

            Ok, to start we need to determine the total distribution of numbers by column.

            We've also posted another topic many draws ago,

            Combinatorial Distribution

            In it there is a formula for determining any Pick r of n column distribution:

            "

            Combinatorial Distribution

                Factorial - n! = n * (n -1) * (n - 2) * ... * 3 * 2 * 1 , and 0! = 1

                Permutation - P(n,r) = n! / (n - r)!

                Combination - C(n,r) = P(n,r) / r!

                Combinatorial Distribution - D(n,r,c,z) = C(z - 1, c - 1) * C(n - z, r - c)

                  n - total number of items
                  r - number of items in a combinatorial or permutational set
                  c - column number of the distribution
                  z - item number of the distribution

            "

             

            For the Mega Millions current matrix of 5 of 75 the distribution is as follows:

             

              Column C
            Item Z12345
            11150626    
            2108843062196   
            310287901192802556  
            4971635171465745571 
            5916895218960144902801
            6864501261970234606905
            781438530069634170136015
            876648033533546431234535
            972072036608060060369670
            10677040393120748805460126
            11635376416640907207680210
            1259566543682110741510395330
            1355784545384012480613640495
            1452185546787014274017446715
            15487635479080161070218401001
            16455126487635179655268451365
            17424270493696198360324801820
            18395010497420217056387602380
            19367290498960235620456963060
            20341055498465253935532953876
            21316251496080271890615604845
            22292825491946289380704905985
            23270725486200306306800807315
            24249900478975322575903218855
            2523030047040033810010120010626
            2621187646060035280011270012650
            2719458044969636660012480014950
            2817836543780537943113747517550
            2916318542504039123015069620475
            3014899541151040194016443023751
            3113575139732041151017864027405
            3212341038257141989519328531465
            3311193036736042705620832035960
            3410127035178043296022369640920
            359139033592043758023936046376
            368225131986544089525525552360
            377381530369644289027132058905
            386604528749044355628749066045
            395890527132044289030369673815
            405236025525544089531986582251
            414637623936043758033592091390
            4240920223696432960351780101270
            4335960208320427056367360111930
            4431465193285419895382571123410
            4527405178640411510397320135751
            4623751164430401940411510148995
            4720475150696391230425040163185
            4817550137475379431437805178365
            4914950124800366600449696194580
            5012650112700352800460600211876
            5110626101200338100470400230300
            52885590321322575478975249900
            53731580080306306486200270725
            54598570490289380491946292825
            55484561560271890496080316251
            56387653295253935498465341055
            57306045696235620498960367290
            58238038760217056497420395010
            59182032480198360493696424270
            60136526845179655487635455126
            61100121840161070479080487635
            6271517446142740467870521855
            6349513640124806453840557845
            6433010395107415436821595665
            65210768090720416640635376
            66126546074880393120677040
            6770369660060366080720720
            6835234546431335335766480
            6915136034170300696814385
            70569023460261970864501
            71128014490218960916895
            72 717455171465971635
            73  25561192801028790
            74   621961088430
            75    1150626

             

            Presented 'AS IS' and for Entertainment Purposes Only.
            Any gain or loss is your responsibility.
            Use at your own risk.

            Order is a Subset of Chaos
            Knowledge is Beyond Belief
            Wisdom is Not Censored
            Douglas Paul Smallish
            Jehocifer

              JADELottery's avatar - YingYangYong 01.PNG
              The Quantum Master
              West Concord, MN
              United States
              Member #21
              December 7, 2001
              3685 Posts
              Offline
              Posted: March 24, 2014, 4:08 pm - IP Logged

              Ok, to start we need to determine the total distribution of numbers by column.

              We've also posted another topic many draws ago,

              Combinatorial Distribution

              In it there is a formula for determining any Pick r of n column distribution:

              "

              Combinatorial Distribution

                  Factorial - n! = n * (n -1) * (n - 2) * ... * 3 * 2 * 1 , and 0! = 1

                  Permutation - P(n,r) = n! / (n - r)!

                  Combination - C(n,r) = P(n,r) / r!

                  Combinatorial Distribution - D(n,r,c,z) = C(z - 1, c - 1) * C(n - z, r - c)

                    n - total number of items
                    r - number of items in a combinatorial or permutational set
                    c - column number of the distribution
                    z - item number of the distribution

              "

               

              For the Mega Millions current matrix of 5 of 75 the distribution is as follows:

               

                Column C
              Item Z12345
              11150626    
              2108843062196   
              310287901192802556  
              4971635171465745571 
              5916895218960144902801
              6864501261970234606905
              781438530069634170136015
              876648033533546431234535
              972072036608060060369670
              10677040393120748805460126
              11635376416640907207680210
              1259566543682110741510395330
              1355784545384012480613640495
              1452185546787014274017446715
              15487635479080161070218401001
              16455126487635179655268451365
              17424270493696198360324801820
              18395010497420217056387602380
              19367290498960235620456963060
              20341055498465253935532953876
              21316251496080271890615604845
              22292825491946289380704905985
              23270725486200306306800807315
              24249900478975322575903218855
              2523030047040033810010120010626
              2621187646060035280011270012650
              2719458044969636660012480014950
              2817836543780537943113747517550
              2916318542504039123015069620475
              3014899541151040194016443023751
              3113575139732041151017864027405
              3212341038257141989519328531465
              3311193036736042705620832035960
              3410127035178043296022369640920
              359139033592043758023936046376
              368225131986544089525525552360
              377381530369644289027132058905
              386604528749044355628749066045
              395890527132044289030369673815
              405236025525544089531986582251
              414637623936043758033592091390
              4240920223696432960351780101270
              4335960208320427056367360111930
              4431465193285419895382571123410
              4527405178640411510397320135751
              4623751164430401940411510148995
              4720475150696391230425040163185
              4817550137475379431437805178365
              4914950124800366600449696194580
              5012650112700352800460600211876
              5110626101200338100470400230300
              52885590321322575478975249900
              53731580080306306486200270725
              54598570490289380491946292825
              55484561560271890496080316251
              56387653295253935498465341055
              57306045696235620498960367290
              58238038760217056497420395010
              59182032480198360493696424270
              60136526845179655487635455126
              61100121840161070479080487635
              6271517446142740467870521855
              6349513640124806453840557845
              6433010395107415436821595665
              65210768090720416640635376
              66126546074880393120677040
              6770369660060366080720720
              6835234546431335335766480
              6915136034170300696814385
              70569023460261970864501
              71128014490218960916895
              72 717455171465971635
              73  25561192801028790
              74   621961088430
              75    1150626

               

              Next, if we sum the frequencies in the first column for the range 01 to 12 we get:

              1150626 + 1088430 + 1028790 + 971635 + 916895 + 864501 + 814385 + 766480 + 720720 + 677040 + 635376 + 595665

              or

              10230543

              Now, this tells the frequency when that range hits, however, it's when it does not hit when the consecutive run ends.

              So, we need the frequency of when that range does not hit; we simply subtract it from the total possible outcomes of 17259390 to get the correct frequency we need to figure out the reoccurrence distribution.

              The frequency is 17259390 - 10230543 = 7028847

              From Discharging Reoccurrence Distribution

              "    Discharge Reoccurrence - y = (d / m2 ) e -(x / m )

                    d - total number of draws
                     m - average rate of reoccurrence
                     x - draw difference or Dd between two draw occurrences of the same number
                     y - the approximate frequency of reoccurrence for a given draw difference or Dd for a given draw count d

              "

              m = 17259390 / 7028847 and reduces to 1917710 / 780983 which is approximately 2.45550799441

              We can now use the Discharge Reoccurrence formula to see approximately what kind of distribution we might see for the current 44 draws in the mega millions pick 5 of 75.

              y = (44 / (2.45550799441)2 ) e -(x / 2.45550799441 )

               

              x - Consecutive Run of 01 to 12 Drawny - Rounded ApproximationActual ObservationPercent Probability
              15311.04%
              2347.34%
              3204.89%
              4123.25%
              5102.16%
              6101.44%
              7000.96%
              8010.64%
              9000.42%
              10000.28%
              11000.19%
              12000.13%
              13000.08%
              14000.06%
              15000.04%
              16000.02%
              17000.02%
              18000.01%

               

              The percent probability is just the e -(x / m )  portion of the formula.

              To get other draw distributions, just change d to some other value.

              Based on what we can determine from this, the selection from 01 to 12 is very likely to end for this consecutive run.

              Presented 'AS IS' and for Entertainment Purposes Only.
              Any gain or loss is your responsibility.
              Use at your own risk.

              Order is a Subset of Chaos
              Knowledge is Beyond Belief
              Wisdom is Not Censored
              Douglas Paul Smallish
              Jehocifer

                JADELottery's avatar - YingYangYong 01.PNG
                The Quantum Master
                West Concord, MN
                United States
                Member #21
                December 7, 2001
                3685 Posts
                Offline
                Posted: March 25, 2014, 11:56 am - IP Logged

                Next, if we sum the frequencies in the first column for the range 01 to 12 we get:

                1150626 + 1088430 + 1028790 + 971635 + 916895 + 864501 + 814385 + 766480 + 720720 + 677040 + 635376 + 595665

                or

                10230543

                Now, this tells the frequency when that range hits, however, it's when it does not hit when the consecutive run ends.

                So, we need the frequency of when that range does not hit; we simply subtract it from the total possible outcomes of 17259390 to get the correct frequency we need to figure out the reoccurrence distribution.

                The frequency is 17259390 - 10230543 = 7028847

                From Discharging Reoccurrence Distribution

                "    Discharge Reoccurrence - y = (d / m2 ) e -(x / m )

                      d - total number of draws
                       m - average rate of reoccurrence
                       x - draw difference or Dd between two draw occurrences of the same number
                       y - the approximate frequency of reoccurrence for a given draw difference or Dd for a given draw count d

                "

                m = 17259390 / 7028847 and reduces to 1917710 / 780983 which is approximately 2.45550799441

                We can now use the Discharge Reoccurrence formula to see approximately what kind of distribution we might see for the current 44 draws in the mega millions pick 5 of 75.

                y = (44 / (2.45550799441)2 ) e -(x / 2.45550799441 )

                 

                x - Consecutive Run of 01 to 12 Drawny - Rounded ApproximationActual ObservationPercent Probability
                15311.04%
                2347.34%
                3204.89%
                4123.25%
                5102.16%
                6101.44%
                7000.96%
                8010.64%
                9000.42%
                10000.28%
                11000.19%
                12000.13%
                13000.08%
                14000.06%
                15000.04%
                16000.02%
                17000.02%
                18000.01%

                 

                The percent probability is just the e -(x / m )  portion of the formula.

                To get other draw distributions, just change d to some other value.

                Based on what we can determine from this, the selection from 01 to 12 is very likely to end for this consecutive run.

                - Correction -

                We said, "The percent probability is just the e -(x / m )  portion of the formula."

                The correct probability is (1 / (2.45550799441)2 ) e -(x / 2.45550799441 ).

                The (1 / (2.45550799441)2 ) propotion is required.

                The proportion can also be expressed as (1917710 / 780983)2.

                To get percentge, multiply by 100%.

                Presented 'AS IS' and for Entertainment Purposes Only.
                Any gain or loss is your responsibility.
                Use at your own risk.

                Order is a Subset of Chaos
                Knowledge is Beyond Belief
                Wisdom is Not Censored
                Douglas Paul Smallish
                Jehocifer

                  Avatar
                  Rio de Janeiro
                  Brazil
                  Member #136360
                  December 9, 2012
                  56 Posts
                  Offline
                  Posted: April 4, 2014, 8:39 am - IP Logged

                  Jade where you're going? won the lottery?

                  Thumbs Up