Welcome Guest
Log In | Register )
You last visited December 7, 2016, 10:55 pm
All times shown are
Eastern Time (GMT-5:00)

Nonlinear regression to predict lotteries

Topic closed. 119 replies. Last post 2 years ago by lottoswe.

Page 8 of 8
53
PrintE-mailLink
RL-RANDOMLOGIC's avatar - usafce

United States
Member #59354
March 13, 2008
3972 Posts
Offline
Posted: February 16, 2015, 2:09 pm - IP Logged

Ok BOB

Straight up, using regression to predict a random lottery drawing is a waste of time.  Selecting your

numbers randomly might even do better.   Study the data, make your best  guess, and forget regression

as it's not going to help.   Population densities in a lottery game are a product of random and while they

may continue there is no way to predict when.  I have ran thousands of simulations using regression and

tested the results against real random data, ie past drawings,  and could not find anything that made me

a believer.   At best it can be used to narrow the field but even then it is is not dependable.   Someone may

use some sort of regression and actually win something but regression was not responsible.   

Straight up, no BS

RL

Working on my Ph.D.  "University of hard Knocks"

I will consider the opinion that my winnings are a product of chance if you are willing to consider

they are not.  Many great discoveries come while searching for something else

USAF https://en.wikipedia.org/wiki/Prime_Base_Engineer_Emergency_Force

  US Flag Trump / 2016 & 2020  

    RL-RANDOMLOGIC's avatar - usafce

    United States
    Member #59354
    March 13, 2008
    3972 Posts
    Offline
    Posted: February 16, 2015, 2:23 pm - IP Logged

    Take a look at the results below.  This data represents one rogue positions values 0 to 3

    The asterisk's indicate the actual value that hit, the top line is the current data.  Notice that

    the values rated highest and lowest both showed the same number of times, 5ea.   I don't

    care how  you slice it one still has to guess.   If that translates to BS then so be it.

    RL

     

    These values are the results of millions of calculations. 

    Red = most probable

    Blue = least probable. 

    (*) actual value that hit.

    The overall average on the bottom line just includes the values that showed.

    Working on my Ph.D.  "University of hard Knocks"

    I will consider the opinion that my winnings are a product of chance if you are willing to consider

    they are not.  Many great discoveries come while searching for something else

    USAF https://en.wikipedia.org/wiki/Prime_Base_Engineer_Emergency_Force

      US Flag Trump / 2016 & 2020  

      Avatar
      bgonçalves
      Brasil
      Member #92564
      June 9, 2010
      2122 Posts
      Offline
      Posted: February 16, 2015, 2:57 pm - IP Logged

      Rl, wanted his opinion, because in a lottery, 49/6 example Here we have 6 positions, or 6 last digit, to reach 100% is needed 100,000 (one hundred thousand in 100% = 000000-999999) But I got in ascending order 5005 ) clear is obvious in 100% a reduction of 95,000 ninety-five thousand, 100%

        RL-RANDOMLOGIC's avatar - usafce

        United States
        Member #59354
        March 13, 2008
        3972 Posts
        Offline
        Posted: February 17, 2015, 11:01 am - IP Logged

        dr san

        The problems we face trying to predict a random event are not limited to just regression.

        We have to be very careful when we analyze the data so that we don't fall into a connect

        the dot sort of analysis.  I think just about everyone has done this at some time or another.

         

        How many times have you looked at the data after the drawing and seen all kinds of pointers

        that somehow went unnoticed before the drawing.  The truth is that we will always be able to

        do this regardless of which set of numbers come in.   Back-test often fall into this dilemma as

        we are looking at events that have already happened.    Once the draw has come and gone

        so has the randomness so to say.  It's always possible to work out a solution but don't expect

        the solution to be correct.  The model may fit the history but the next draw is random. 

         

        I think gut-instinct is the best predictor we will ever have.    I analyze the data and then make

        my best guess.   This works far better for me than any predictor program I have ever written.

        If your guesses are not doing well then change the data you analyze. 

         

        RL

        Working on my Ph.D.  "University of hard Knocks"

        I will consider the opinion that my winnings are a product of chance if you are willing to consider

        they are not.  Many great discoveries come while searching for something else

        USAF https://en.wikipedia.org/wiki/Prime_Base_Engineer_Emergency_Force

          US Flag Trump / 2016 & 2020  

          Avatar
          bgonçalves
          Brasil
          Member #92564
          June 9, 2010
          2122 Posts
          Offline
          Posted: February 17, 2015, 2:23 pm - IP Logged

          Hello RL perfect and yes because it is a only event (the next draw) but if it is to play 20,30 ... always the same game, we have more confidence, the problem is to find patterns
          Rotary leaving 75% to 80% of the time, position by position, each position may have connection eat nearby position Example 49/6 The 1st position can be seen delays in 2nd place, 2nd place already seen delays eat 1st and 3rd position

            RL-RANDOMLOGIC's avatar - usafce

            United States
            Member #59354
            March 13, 2008
            3972 Posts
            Offline
            Posted: February 17, 2015, 11:18 pm - IP Logged

            dr san

            It's the patterns, trends etc..  not repeating when we need them to that makes prediction so hard.

            Playing second digits is a fine reduction tool but many times requires additional filtering.   We can find

            the expected for any value by looking at it's population within the entire matrix but again this only takes

            us so far.  I have come to hate filtering which led to the creation of the rogue program.  The fewer the

            choices we have to make, the fewer the mistakes.   The more I work on prediction the more I become

            convinced that it's impossible.   I would like to think there is something that has been overlooked but

            I think I will leave it to others to find.     

            RL

            Working on my Ph.D.  "University of hard Knocks"

            I will consider the opinion that my winnings are a product of chance if you are willing to consider

            they are not.  Many great discoveries come while searching for something else

            USAF https://en.wikipedia.org/wiki/Prime_Base_Engineer_Emergency_Force

              US Flag Trump / 2016 & 2020  

              Avatar
              bgonçalves
              Brasil
              Member #92564
              June 9, 2010
              2122 Posts
              Offline
              Posted: February 18, 2015, 6:32 am - IP Logged

              Ok rl, putting the last digits in ascending order, 49/6
              6 positions = the last digit (terminals 0-9) low of 100,000
                (One hundred thousand) for 5005 at 100% clear !!

                Avatar
                Tahiti- Polynesia
                Tuvalu
                Member #34524
                March 4, 2006
                54 Posts
                Offline
                Posted: February 18, 2015, 5:03 pm - IP Logged

                Nonlinear regression

                17fev2015 - Euromillions

                Data file processed with B-spline Order =3 Interval = 0.0125 (insert 80 intermediate datas between 2 numbers)

                Predictor : Nearest neighbour
                Distance : Euclidian

                Dimension 3
                Delay 2
                Bandwidth 9

                Data window used = 48000


                17/02/2015 02 05 18 30 43 /1 10

                Results at 80-160-240-320-400


                Model Results
                ---------------------

                Time Index Actual Value Predicted Value Error (NMSE)
                48001 0.5440586     1
                48002 -4.8893911    2
                48003 6.3601678     3
                --------------------------
                48078 29.1009668 78
                48079 29.5949999 79
                48080 30.1223886 80----30
                48081 30.6559556 81
                48082 31.1638777 82
                --------------------------
                48155 43.0777338 155
                48156 42.8645999 156
                48157 42.6683116 157--43
                48158 42.4350446 158
                48159 42.1979336 159
                48160 41.980545 160-------
                48161 41.7508774 161
                48162 41.5136002 162
                --------------------------
                48235 17.9162668 235
                48236 17.5252889 236-18
                48237 17.1408666 237
                48238 16.705722 238
                48239 16.2460999 239
                48240 15.8173555 240--------
                48241 15.4068667 241
                48242 15.021411 242
                ------------------------
                48317 1.8668622 317
                48318 1.8733389 318
                48319 1.8780378 319
                48320 1.9465211 320-----2
                48321 2.0723756 321
                48322 2.1588112 322
                --------------------------
                48398 30.6559556 398
                48399 31.1638777 399
                48400 31.6756001 400---

                Just an example.

                That's a multi-step prediction, 400 datas ahead predicted with results at each 80 datas.

                4 first numbers are good or near good. Fifth number is more difficult to find.

                I generally use 2 numbers at each 80 datas. 3 good numbers on that drawing plus one star.

                One-step prediction would be more accurate but the task is long and tedious.

                I have a program beeing coded to automatize the process.

                I have others examples like that.

                I have won a lot with nonlinear regression. The only way to win. 

                Bob

                  Avatar
                  New Member
                  Wheeling, West VA
                  United States
                  Member #115308
                  August 17, 2011
                  8 Posts
                  Offline
                  Posted: February 18, 2015, 6:12 pm - IP Logged

                  dr san

                  It's the patterns, trends etc..  not repeating when we need them to that makes prediction so hard.

                  Playing second digits is a fine reduction tool but many times requires additional filtering.   We can find

                  the expected for any value by looking at it's population within the entire matrix but again this only takes

                  us so far.  I have come to hate filtering which led to the creation of the rogue program.  The fewer the

                  choices we have to make, the fewer the mistakes.   The more I work on prediction the more I become

                  convinced that it's impossible.   I would like to think there is something that has been overlooked but

                  I think I will leave it to others to find.     

                  RL

                  When RL  says, "The more I work on predictions the more I become convinced that it's impossible," the more hope I feel for him.

                    Avatar
                    Tahiti- Polynesia
                    Tuvalu
                    Member #34524
                    March 4, 2006
                    54 Posts
                    Offline
                    Posted: February 18, 2015, 8:46 pm - IP Logged

                    Another example

                    23/01/2015 for 27jan2015

                    27/01/2015 0* 10 31 33 40 /8 10

                    Dimension: 4
                    Delay: 72
                    Bandwidth: 8

                    Predictor Type Kernel Regression
                    Kernel Type: Tricube
                    Distance Type: Euclidean

                    Interpolation : B-spline order3. Interval =0.0125 (80n inserted between 2 data)

                    Data Window used: 48000

                    xx 80 and multiple
                    ** 79 and multiple

                    Results

                    48001 5.5625935 1
                    48002 5.2665372 2
                    48003 5.1143618 3
                    48004 4.9848709 4
                    48005 4.8905682 5
                    48006 4.7926008 6
                    48007 4.7137892 7
                    48008 4.6846332 8
                    48009 4.6061714 9
                    48010 4.5314446 10
                    48011 4.4389207 11
                    48012 4.3709692 12
                    48013 4.2485473 13
                    48014 4.1449217 14
                    48015 3.9648433 15
                    48016 3.8127105 16
                    48017 3.5413542 17
                    48018 3.2303695 18
                    48019 2.7320614 19
                    48020 2.1079218 20
                    48021 1.3993239 21
                    48022 0.8067466 22
                    48023 0.4121742 23
                    48024 0.1018203 24
                    48025 -0.1147591 25
                    48026 -0.1870762 26
                    48027 -0.2923274 27
                    48028 -0.3610562 28
                    48029 -0.6730756 29
                    48030 -1.0375281 30
                    48031 -1.3602798 31
                    48032 -1.4885052 32
                    48033 -1.6614458 33
                    48034 -1.916087 34
                    48035 -2.0031789 35
                    48036 -2.0622956 36
                    48037 -2.1212777 37
                    48038 -2.1853451 38
                    48039 -2.2605403 39
                    48040 -2.4019322 40
                    48041 -2.439503 41
                    48042 -2.4207806 42
                    48043 -2.3905713 43
                    48044 -2.320971 44
                    48045 -2.2720667 45
                    48046 -2.2799619 46
                    48047 -2.2389951 47
                    48048 -2.196441 48
                    48049 -2.1007782 49
                    48050 -2.0782619 50
                    48051 -2.1590237 51
                    48052 -2.3086557 52
                    48053 -2.4368237 53
                    48054 -2.5507459 54
                    48055 -2.6871059 55
                    48056 -2.9827468 56
                    48057 -3.6206471 57
                    48058 -4.0594217 58
                    48059 -4.2979458 59
                    48060 -4.3995872 60
                    48061 -4.3819931 61
                    48062 -4.3314843 62
                    48063 -4.5155307 63
                    48064 -5.0503119 64
                    48065 -5.4680654 65
                    48066 -5.3607272 66
                    48067 -5.0367847 67
                    48068 -4.4905593 68
                    48069 -4.349921 69
                    48070 -4.1643907 70
                    48071 -3.7054767 71
                    48072 -2.8082123 72
                    48073 -1.6497172 73
                    48074 -0.715752 74
                    48075 0.2052701 75
                    48076 1.3126842 76
                    48077 2.4709379 77
                    48078 3.6723353 78
                    48079 4.7280846 79**5
                    48080 5.3052369 80xx--5
                    48081 5.6337938 81
                    48082 5.9071448 82
                    48083 6.1157256 83
                    48084 6.1988502 84
                    48085 6.5005937 85
                    48086 6.6166741 86
                    48087 6.6261581 87
                    48088 6.8590747 88
                    48089 6.9280099 89
                    48090 7.0639738 90
                    48091 7.1313773 91
                    48092 7.1702691 92
                    48093 7.1041231 93
                    48094 7.1980466 94
                    48095 7.0701694 95
                    48096 7.0845043 96
                    48097 7.082953 97
                    48098 7.1560568 98
                    48099 7.2420476 99
                    48100 7.2157996 100
                    48101 7.3293115 101
                    48102 7.3574902 102
                    48103 7.4602416 103
                    48104 7.4137234 104
                    48105 7.4919556 105
                    48106 7.4643039 106
                    48107 7.4989112 107
                    48108 7.3910033 108
                    48109 7.2316695 109
                    48110 7.1201394 110
                    48111 6.795804 111
                    48112 6.384007 112
                    48113 6.2432572 113
                    48114 5.9795012 114
                    48115 5.6914885 115
                    48116 5.5820573 116
                    48117 5.4989392 117
                    48118 5.1474938 118
                    48119 4.9081839 119
                    48120 4.6383597 120
                    48121 4.5759564 121
                    48122 4.6534066 122
                    48123 4.9333472 123
                    48124 4.9780892 124
                    48125 5.0532771 125
                    48126 5.3270812 126
                    48127 5.6861793 127
                    48128 6.2639633 128
                    48129 6.7629827 129
                    48130 7.4655775 130
                    48131 8.5152165 131
                    48132 9.847192 132
                    48133 11.6842558 133
                    48134 13.8090873 134
                    48135 15.7214338 135
                    48136 17.3135597 136
                    48137 18.5382812 137
                    48138 20.0126197 138
                    48139 21.6615186 139
                    48140 23.3778375 140
                    48141 25.14117 141
                    48142 27.3145428 142
                    48143 29.3253846 143
                    48144 30.9560386 144
                    48145 32.663222 145
                    48146 34.0454409 146
                    48147 35.1932775 147
                    48148 35.6489983 148
                    48149 36.0247145 149
                    48150 36.2134839 150
                    48151 36.1538325 151
                    48152 35.8221141 152
                    48153 35.1647418 153
                    48154 34.3517533 154
                    48155 33.7605067 155
                    48156 33.4396555 156
                    48157 33.2814428 157
                    48158 33.2475094 158****33
                    48159 33.196325 159
                    48160 33.1597382 160xx--33
                    48161 33.1929356 161
                    48162 33.2124828 162
                    48163 33.2423185 163
                    48164 33.234216 164
                    48165 33.2803393 165
                    48166 33.3682384 166
                    48167 33.5502607 167
                    48168 33.8037103 168
                    48169 34.1195629 169
                    48170 34.5622492 170
                    48171 35.0405718 171
                    48172 35.6565703 172
                    48173 36.5002951 173
                    48174 37.5492333 174
                    48175 38.6517034 175
                    48176 39.7289237 176
                    48177 40.7275158 177
                    48178 41.5111115 178
                    48179 42.2677053 179
                    48180 42.8356277 180
                    48181 43.2860762 181
                    48182 43.6170336 182
                    48183 44.2769357 183
                    48184 45.1558507 184
                    48185 45.8518066 185
                    48186 46.4789863 186
                    48187 46.9242772 187
                    48188 47.1971927 188
                    48189 47.5348325 189
                    48190 47.6752588 190
                    48191 47.7779864 191
                    48192 48.0331448 192
                    48193 48.0326601 193
                    48194 47.9228481 194
                    48195 47.9015539 195
                    48196 47.6402778 196
                    48197 47.4960245 197
                    48198 47.1930762 198
                    48199 46.9266679 199
                    48200 46.6779108 200
                    48201 46.4567172 201
                    48202 46.3311891 202
                    48203 46.1511178 203
                    48204 46.0720889 204
                    48205 46.0197575 205
                    48206 45.9892517 206
                    48207 46.3659734 207
                    48208 46.6913243 208
                    48209 46.807274 209
                    48210 46.8824446 210
                    48211 46.9402539 211
                    48212 46.9928195 212
                    48213 46.8045305 213
                    48214 46.2920506 214
                    48215 45.5364924 215
                    48216 44.8521051 216
                    48217 44.2138277 217
                    48218 43.4850547 218
                    48219 42.5092327 219
                    48220 41.2639931 220
                    48221 40.0946336 221
                    48222 39.3562223 222
                    48223 38.9772031 223
                    48224 38.6876813 224
                    48225 38.632789 225
                    48226 38.6962575 226
                    48227 38.9106005 227
                    48228 39.2332185 228
                    48229 39.541386 229
                    48230 39.7686815 230
                    48231 39.9191472 231
                    48232 39.9979201 232
                    48233 39.9841766 233
                    48234 40.0130866 234
                    48235 40.0407666 235
                    48236 40.0167817 236
                    48237 39.9174674 237***40
                    48238 39.7331442 238
                    48239 39.5179936 239
                    48240 39.2683569 240xx
                    48241 38.9255645 241
                    48242 38.6634097 242
                    48243 38.3161221 243
                    48244 37.934152 244
                    48245 37.5207099 245
                    48246 37.066043 246
                    48247 36.5789672 247
                    48248 36.1497302 248
                    48249 35.8814137 249
                    48250 35.6613121 250
                    48251 35.487689 251
                    48252 35.2274446 252
                    48253 35.1589125 253
                    48254 35.0368194 254
                    48255 34.9019296 255
                    48256 34.7494736 256
                    48257 34.6694897 257
                    48258 34.6685671 258
                    48259 34.7078632 259
                    48260 34.7454281 260
                    48261 34.7862455 261
                    48262 34.8469551 262
                    48263 34.8550725 263
                    48264 35.0467666 264
                    48265 35.1824334 265
                    48266 35.2198852 266
                    48267 35.2232445 267
                    48268 35.2283591 268
                    48269 35.1883453 269
                    48270 35.0754514 270
                    48271 34.8204699 271
                    48272 34.7584658 272
                    48273 34.4485952 273
                    48274 34.1667006 274
                    48275 33.8742659 275
                    48276 33.5482028 276
                    48277 33.1220315 277
                    48278 32.4561424 278
                    48279 31.7606397 279
                    48280 31.0088231 280
                    48281 30.1835368 281
                    48282 29.404329 282
                    48283 28.7527179 283
                    48284 28.1492528 284
                    48285 27.6199925 285
                    48286 27.1653558 286
                    48287 26.6919416 287
                    48288 26.2608462 288
                    48289 25.7784077 289
                    48290 25.1422205 290
                    48291 24.6996915 291
                    48292 24.3288558 292
                    48293 23.923026 293
                    48294 23.5373527 294
                    48295 23.1575692 295
                    48296 22.3424844 296
                    48297 21.5095278 297
                    48298 20.5115928 298
                    48299 20.0842538 299
                    48300 19.7123771 300
                    48301 19.3830166 301
                    48302 18.8377742 302
                    48303 17.8708813 303
                    48304 16.5990112 304
                    48305 15.6093827 305
                    48306 14.819322 306
                    48307 14.2337023 307
                    48308 13.7501772 308
                    48309 13.360248 309
                    48310 12.9545381 310
                    48311 12.4362732 311
                    48312 11.7633806 312
                    48313 11.2179972 313
                    48314 10.6098778 314
                    48315 10.0241901 315--10
                    48316 9.2502023 316***
                    48317 8.2631235 317
                    48318 7.2775229 318
                    48319 6.7274139 319
                    48320 6.3963068 320xx
                    48321 6.3131454 321
                    48322 6.1216863 322
                    48323 5.9215632 323
                    48324 5.6826038 324
                    48325 5.6486918 325
                    48326 5.583607 326
                    48327 5.6431479 327
                    48328 5.8008728 328
                    48329 6.4447156 329
                    48330 7.4605208 330
                    48331 9.2171713 331
                    48332 11.4567384 332
                    48333 13.1476088 333
                    48334 14.3790842 334
                    48335 15.1972725 335
                    48336 15.7311749 336
                    48337 16.2007586 337
                    48338 16.5978946 338
                    48339 16.9507152 339
                    48340 17.2848114 340
                    48341 17.607984 341
                    48342 17.9885604 342
                    48343 18.2741121 343
                    48344 18.4837705 344
                    48345 18.7368582 345
                    48346 18.8005178 346
                    48347 18.8395906 347
                    48348 18.9648045 348
                    48349 19.1397058 349
                    48350 19.1506065 350
                    48351 18.9841244 351
                    48352 18.7436133 352
                    48353 18.4355379 353
                    48354 17.8835116 354
                    48355 17.4132185 355
                    48356 17.0376083 356
                    48357 16.8509362 357
                    48358 16.9428499 358
                    48359 17.2793154 359
                    48360 17.9220495 360
                    48361 18.7042057 361
                    48362 19.9927175 362
                    48363 21.0273803 363
                    48364 21.1366915 364
                    48365 21.5439039 365
                    48366 21.6738526 366
                    48367 21.5243228 367
                    48368 21.1628666 368
                    48369 20.9318913 369
                    48370 21.1130315 370
                    48371 21.5908094 371
                    48372 22.2996255 372
                    48373 22.916707 373
                    48374 23.4012991 374
                    48375 23.8869005 375
                    48376 24.490168 376
                    48377 24.7797857 377
                    48378 24.5230619 378
                    48379 24.0565748 379
                    48380 23.7903559 380
                    48381 23.6662444 381
                    48382 23.5975343 382
                    48383 23.6186158 383
                    48384 23.902261 384
                    48385 24.238633 385
                    48386 24.4764442 386
                    48387 24.8920387 387
                    48388 25.3461032 388
                    48389 26.0101427 389
                    48390 26.8490496 390
                    48391 27.6337616 391
                    48392 28.6546227 392
                    48393 29.6479815 393
                    48394 30.5331663 394-31
                    48395 31.6578309 395**
                    48396 32.5463436 396
                    48397 33.3735578 397
                    48398 34.0209808 398
                    48399 34.5229446 399
                    48400 35.0174452 400xx

                    Look at it and make your own idea.

                    Lottery is chaotic but is deterministic, not stochastic (completely random).

                    If you know how to handle it, you'll get good results.

                    Those who don't know will not succeed.

                    Bob

                      Fibonacci's avatar - Lottery-050.jpg
                      New York, NY
                      United States
                      Member #39471
                      May 16, 2006
                      2696 Posts
                      Offline
                      Posted: February 20, 2015, 6:34 am - IP Logged

                      Surely, believers and fans of statistical formulae and methods should be hitting the P3 daily.  :)

                      $$$

                        lakerben's avatar - spherewall
                        New Mexico
                        United States
                        Member #86099
                        January 29, 2010
                        11119 Posts
                        Offline
                        Posted: February 20, 2015, 11:22 pm - IP Logged

                        Put 59 numbers on  sheet of paper spread 1/2 inch apart.  Put chicken feed over the paper.  Turn  a chicken loose and wait 8 minutes.  Take the paper and use the 5 biggest holes that the chicken pecked.  Random but a good chance to win!

                        Dance

                        How about them cowboys!

                         

                         

                        US Flag

                          tdempsey's avatar - Lottery-060.jpg
                          Atlanta, GA
                          United States
                          Member #3480
                          January 24, 2004
                          51 Posts
                          Offline
                          Posted: February 24, 2015, 1:11 am - IP Logged

                          Why would you not sort the draw if the results are non-positional?

                          Tom Dempsey

                            Avatar
                            Tahiti- Polynesia
                            Tuvalu
                            Member #34524
                            March 4, 2006
                            54 Posts
                            Offline
                            Posted: February 24, 2015, 5:36 am - IP Logged

                            Why would you not sort the draw if the results are non-positional?

                            Tom Dempsey

                            Hi,

                            I'm not sure your question is for me but this is my answer about using unsorted drawings.

                            Regression is looking at real phenomenons to predict future in many domains like weather, etc...

                            If you twist the phenomenon by sorting drawings, you loss his true behaviour. You can get some

                            results with sorted  drawings from time to time  but forecasting is regularly far better when taking

                            numbers in the order they come out of the machine.

                            Forecasting column by column is an interesting method but in that case, there will be not enough

                            data to use for good regression. That's about Euromillions I play.

                             

                            Bob

                              Avatar

                              Sweden
                              Member #163023
                              January 17, 2015
                              34 Posts
                              Offline
                              Posted: February 24, 2015, 8:35 am - IP Logged

                              lakerben

                              For now I have to say no, the program is still under development but so far it's proving to be the best

                              I have ever written.  I have deleted all my older stuff from my computer.  I have a daily game version

                              that operates the same way and it will reduce a P-4 to 3 lines with 6 rogues.  Each rogue value has a

                              range of 0 to 3 and it outputs straight hits.  I am in the process of testing all my old predictions tools

                              and analysis stuff to see what I can find that helps pin down the rogue values.  P-3 can be reduced to

                              5 lines with 4 rogue values or 2 lines if 5 rogues are set.   The hard part right now is trying to decide 

                              which game to work on, number games or daily games,  both are really tempting.   These programs

                              don't need extra filtering which was the motive behind them.  Anyway, thanks for your interest and 

                              maybe at some point in the future I will release it.   I kind of overbuilt these programs as they have

                              a number of hidden options, wheels etc.. that give the user many ways to generate the lines and set

                              the rogue values..   

                               

                              Pic of P-4 setup using 6 values.

                              rogue-dg

                              Hi RL,

                              i trying  to understand " rogue values". 

                              You said each rogue value have range 0-3. Are they represent numbers 0-9 like range 0 is 1 and 2 , 1 is 3 and 4 etc?

                              I hope you can explain  this.

                              regards